skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Laber, E.B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Laber, E.B.; Moodie, E.E.M.; van der Laan, M.; Cai, T. (Ed.)
  2. Most linear experimental design problems assume homogeneous variance, while the presence of heteroskedastic noise is present in many realistic settings. Let a learner have access to a finite set of measurement vectors that can be probed to receive noisy linear responses. We propose, analyze and empirically evaluate a novel design for uniformly bounding estimation error of the variance parameters. We demonstrate this method on two adaptive experimental design problems under heteroskedastic noise, fixed confidence transductive best-arm identification and level-set identification and prove the first instance-dependent lower bounds in these settings. Lastly, we construct near-optimal algorithms and demonstrate the large improvements in sample complexity gained from accounting for heteroskedastic variance in these designs empirically. 
    more » « less